Approximation of functions of several variables by spherical Riesz means
Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 181-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

For even $N\ge2$ and $\delta\ge2N-3$(for $N=2,\text{or}4$ we assume that $\delta>(N-1)/2$) we find asymptotic approximations for the quantity $$ E_R^\delta(H_{\rm N}^\omega)=\mathop{sup}\limits_{f\in H_{\rm N}^\omega}\|f(x)-S_R^\omega(x,f)\|_C(R\to\infty),$$ where $S_R^\delta(x,f)$ the spherical Riesz mean of order delta of the Fourier kernel of the function $f(x)$, and $H_N^\omega$ is the class of periodic functions of $N$ variables whose moduli of continuity do not exceed a given convex modulus of continuity $\omega(\delta)$. For $N=2$ and $\delta>1/2$ the result is known.
@article{MZM_1975_17_2_a1,
     author = {B. I. Golubov},
     title = {Approximation of functions of several variables by spherical {Riesz} means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a1/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Approximation of functions of several variables by spherical Riesz means
JO  - Matematičeskie zametki
PY  - 1975
SP  - 181
EP  - 191
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a1/
LA  - ru
ID  - MZM_1975_17_2_a1
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Approximation of functions of several variables by spherical Riesz means
%J Matematičeskie zametki
%D 1975
%P 181-191
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a1/
%G ru
%F MZM_1975_17_2_a1
B. I. Golubov. Approximation of functions of several variables by spherical Riesz means. Matematičeskie zametki, Tome 17 (1975) no. 2, pp. 181-191. http://geodesic.mathdoc.fr/item/MZM_1975_17_2_a1/