Inhomogeneous semigroups of commuting operators
Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of the homogeneously continuable semigroup of operators, and of infinitesimal and reproducing families of a semigroup, are introduced. The class of strongly continuous homogeneously continuable semigroups of commuting linear operators is discussed. This class contains in particular the class $(C_0)$ of homogeneous semigroups. An analog of the Hill–Yosida theorem is proved for it.
@article{MZM_1975_17_1_a6,
     author = {Yu. V. Plyushchev},
     title = {Inhomogeneous semigroups of commuting operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a6/}
}
TY  - JOUR
AU  - Yu. V. Plyushchev
TI  - Inhomogeneous semigroups of commuting operators
JO  - Matematičeskie zametki
PY  - 1975
SP  - 57
EP  - 65
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a6/
LA  - ru
ID  - MZM_1975_17_1_a6
ER  - 
%0 Journal Article
%A Yu. V. Plyushchev
%T Inhomogeneous semigroups of commuting operators
%J Matematičeskie zametki
%D 1975
%P 57-65
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a6/
%G ru
%F MZM_1975_17_1_a6
Yu. V. Plyushchev. Inhomogeneous semigroups of commuting operators. Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 57-65. http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a6/