Inhomogeneous semigroups of commuting operators
Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 57-65
Cet article a éte moissonné depuis la source Math-Net.Ru
The concepts of the homogeneously continuable semigroup of operators, and of infinitesimal and reproducing families of a semigroup, are introduced. The class of strongly continuous homogeneously continuable semigroups of commuting linear operators is discussed. This class contains in particular the class $(C_0)$ of homogeneous semigroups. An analog of the Hill–Yosida theorem is proved for it.
@article{MZM_1975_17_1_a6,
author = {Yu. V. Plyushchev},
title = {Inhomogeneous semigroups of commuting operators},
journal = {Matemati\v{c}eskie zametki},
pages = {57--65},
year = {1975},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a6/}
}
Yu. V. Plyushchev. Inhomogeneous semigroups of commuting operators. Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 57-65. http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a6/