Mean-value theorem for the modulus of multiple trigonometric sums
Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 143-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional analog of the Vinogradov mean-value theorem for the modulus of trigonometric sums is proven.
@article{MZM_1975_17_1_a17,
     author = {G. I. Arkhipov},
     title = {Mean-value theorem for the modulus of multiple trigonometric sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {143--153},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a17/}
}
TY  - JOUR
AU  - G. I. Arkhipov
TI  - Mean-value theorem for the modulus of multiple trigonometric sums
JO  - Matematičeskie zametki
PY  - 1975
SP  - 143
EP  - 153
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a17/
LA  - ru
ID  - MZM_1975_17_1_a17
ER  - 
%0 Journal Article
%A G. I. Arkhipov
%T Mean-value theorem for the modulus of multiple trigonometric sums
%J Matematičeskie zametki
%D 1975
%P 143-153
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a17/
%G ru
%F MZM_1975_17_1_a17
G. I. Arkhipov. Mean-value theorem for the modulus of multiple trigonometric sums. Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 143-153. http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a17/