An estimate of the radius of a~cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres
Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 123-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is devoted to the reduction of the problem in the title to a more fully explored problem in the geometry of numbers. The estimates obtained are given in Table 1.
@article{MZM_1975_17_1_a14,
     author = {S. S. Ryshkov and J. G. Horv\'ath},
     title = {An estimate of the radius of a~cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--128},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/}
}
TY  - JOUR
AU  - S. S. Ryshkov
AU  - J. G. Horváth
TI  - An estimate of the radius of a~cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres
JO  - Matematičeskie zametki
PY  - 1975
SP  - 123
EP  - 128
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/
LA  - ru
ID  - MZM_1975_17_1_a14
ER  - 
%0 Journal Article
%A S. S. Ryshkov
%A J. G. Horváth
%T An estimate of the radius of a~cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres
%J Matematičeskie zametki
%D 1975
%P 123-128
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/
%G ru
%F MZM_1975_17_1_a14
S. S. Ryshkov; J. G. Horváth. An estimate of the radius of a~cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres. Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 123-128. http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/