An estimate of the radius of a cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres
Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 123-128
Cet article a éte moissonné depuis la source Math-Net.Ru
This note is devoted to the reduction of the problem in the title to a more fully explored problem in the geometry of numbers. The estimates obtained are given in Table 1.
@article{MZM_1975_17_1_a14,
author = {S. S. Ryshkov and J. G. Horv\'ath},
title = {An estimate of the radius of a~cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres},
journal = {Matemati\v{c}eskie zametki},
pages = {123--128},
year = {1975},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/}
}
TY - JOUR AU - S. S. Ryshkov AU - J. G. Horváth TI - An estimate of the radius of a cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres JO - Matematičeskie zametki PY - 1975 SP - 123 EP - 128 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/ LA - ru ID - MZM_1975_17_1_a14 ER -
%0 Journal Article %A S. S. Ryshkov %A J. G. Horváth %T An estimate of the radius of a cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres %J Matematičeskie zametki %D 1975 %P 123-128 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/ %G ru %F MZM_1975_17_1_a14
S. S. Ryshkov; J. G. Horváth. An estimate of the radius of a cylinder imbeddable in every lattice packing of $n$-dimensional unit spheres. Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 123-128. http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a14/