Zolotarev problem in the metric of $L_1([-1,1])$
Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 13-20
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we solve the problem of the determination of a polynomial of degree n with given two leading coefficients which has the least deviation from zero in the metric of $L_1([-1,1])$. The extremal polynomial is expressed in the form of some linear combination of Chebyshev polynomials of the second kind.
@article{MZM_1975_17_1_a1,
author = {\`E. M. Galeev},
title = {Zolotarev problem in the metric of $L_1([-1,1])$},
journal = {Matemati\v{c}eskie zametki},
pages = {13--20},
year = {1975},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a1/}
}
È. M. Galeev. Zolotarev problem in the metric of $L_1([-1,1])$. Matematičeskie zametki, Tome 17 (1975) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/MZM_1975_17_1_a1/