Annihilator conditions in endomorphism rings of modules
Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 933-942 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concepts of an intrinsically projective module and an intrinsically injective module are introduced and their connection with the presence of annihilator conditions in the endomorphism ring of a module is explained. It is shown that a ring $R$ is quasi-Frobenius if and only if in the endomorphism ring of any fully projective (or any fully injective) $R$-module it is true that $r(l(I))=I$ and $l(r(J))=J$ for all finitely generated right ideals $I$ and finitely generated left ideals $J$.
@article{MZM_1974_16_6_a9,
     author = {G. M. Brodskii},
     title = {Annihilator conditions in endomorphism rings of modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {933--942},
     year = {1974},
     volume = {16},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - Annihilator conditions in endomorphism rings of modules
JO  - Matematičeskie zametki
PY  - 1974
SP  - 933
EP  - 942
VL  - 16
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/
LA  - ru
ID  - MZM_1974_16_6_a9
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T Annihilator conditions in endomorphism rings of modules
%J Matematičeskie zametki
%D 1974
%P 933-942
%V 16
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/
%G ru
%F MZM_1974_16_6_a9
G. M. Brodskii. Annihilator conditions in endomorphism rings of modules. Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 933-942. http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/