Annihilator conditions in endomorphism rings of modules
Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 933-942.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of an intrinsically projective module and an intrinsically injective module are introduced and their connection with the presence of annihilator conditions in the endomorphism ring of a module is explained. It is shown that a ring $R$ is quasi-Frobenius if and only if in the endomorphism ring of any fully projective (or any fully injective) $R$-module it is true that $r(l(I))=I$ and $l(r(J))=J$ for all finitely generated right ideals $I$ and finitely generated left ideals $J$.
@article{MZM_1974_16_6_a9,
     author = {G. M. Brodskii},
     title = {Annihilator conditions in endomorphism rings of modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {933--942},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - Annihilator conditions in endomorphism rings of modules
JO  - Matematičeskie zametki
PY  - 1974
SP  - 933
EP  - 942
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/
LA  - ru
ID  - MZM_1974_16_6_a9
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T Annihilator conditions in endomorphism rings of modules
%J Matematičeskie zametki
%D 1974
%P 933-942
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/
%G ru
%F MZM_1974_16_6_a9
G. M. Brodskii. Annihilator conditions in endomorphism rings of modules. Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 933-942. http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a9/