Strong integral operators
Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 907-912.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a strong integral (strong B-integral) operator in $L_2$ is a Hilbert–Schmidt (nuclear) operator.
@article{MZM_1974_16_6_a6,
     author = {V. B. Korotkov},
     title = {Strong integral operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {907--912},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a6/}
}
TY  - JOUR
AU  - V. B. Korotkov
TI  - Strong integral operators
JO  - Matematičeskie zametki
PY  - 1974
SP  - 907
EP  - 912
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a6/
LA  - ru
ID  - MZM_1974_16_6_a6
ER  - 
%0 Journal Article
%A V. B. Korotkov
%T Strong integral operators
%J Matematičeskie zametki
%D 1974
%P 907-912
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a6/
%G ru
%F MZM_1974_16_6_a6
V. B. Korotkov. Strong integral operators. Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 907-912. http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a6/