Limits of indeterminacy of sequences obtained from a given sequence using a regular transformation
Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 887-897
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem considered is how there can be a set of weak accumulation points of the subsequences of a sequence obtained from a given sequence by using a regular transformation of the class $T(C,C')$ when the terms of the sequences are elements of a reflexive Banach space. $T(C,C')$ denotes the class of complex regular matrices $c_{mn}$ ($c_{mn}=a_{mn}+ib_{mn}$, where $a_{mn}$ and $a_{mn}$ are real numbers) satisfying the conditions $\varlimsup\limits_{m\to\infty}\sum_{n=0}^\infty|a_{mn}|=C$ и $\varlimsup\limits_{m\to\infty}\sum_{n=0}^\infty|b_{mn}|=C'$
@article{MZM_1974_16_6_a4,
author = {N. N. Kholshchevnikova},
title = {Limits of indeterminacy of sequences obtained from a~given sequence using a~regular transformation},
journal = {Matemati\v{c}eskie zametki},
pages = {887--897},
year = {1974},
volume = {16},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a4/}
}
TY - JOUR AU - N. N. Kholshchevnikova TI - Limits of indeterminacy of sequences obtained from a given sequence using a regular transformation JO - Matematičeskie zametki PY - 1974 SP - 887 EP - 897 VL - 16 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a4/ LA - ru ID - MZM_1974_16_6_a4 ER -
N. N. Kholshchevnikova. Limits of indeterminacy of sequences obtained from a given sequence using a regular transformation. Matematičeskie zametki, Tome 16 (1974) no. 6, pp. 887-897. http://geodesic.mathdoc.fr/item/MZM_1974_16_6_a4/