On the tensor product of representations of semisimple Lie groups
Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 731-739
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of the decomposition of the tensor product of finite and infinite representations of a complex semigroup of a Lie group is examined by using the theory of characters of completely irreducible representations. A theorem is proved which indicates that completely irreducible representations enter into the expansion of the tensor product of a finite and elementary representation.
@article{MZM_1974_16_5_a6,
author = {A. U. Klimyk},
title = {On the tensor product of representations of semisimple {Lie} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {731--739},
year = {1974},
volume = {16},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a6/}
}
A. U. Klimyk. On the tensor product of representations of semisimple Lie groups. Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 731-739. http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a6/