Approximation by rational functions in integral metrics and differentiability in the mean
Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 801-811
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with approximations of a function $f$ of space $L_p[0,1]$ by rational functions in the metric of this same space ($0
). It is shown that sufficiently rapid decrease as $n\to\infty$ of the least deviations $R_n(f,р)$ of function$f$ of rational functions of degree no higher than $n$ is evidence of the presence in $f$ of derivatives and differentials of a definite order if differentiation is understood as differentiation in the metric of space $L_q[0,1]$, with $0 .
, where $q(p)$ depends on $p$ and the differentiation order, $q(p)
@article{MZM_1974_16_5_a14,
author = {E. P. Dolzhenko and E. A. Sevast'yanov},
title = {Approximation by rational functions in integral metrics and differentiability in the mean},
journal = {Matemati\v{c}eskie zametki},
pages = {801--811},
year = {1974},
volume = {16},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a14/}
}
TY - JOUR AU - E. P. Dolzhenko AU - E. A. Sevast'yanov TI - Approximation by rational functions in integral metrics and differentiability in the mean JO - Matematičeskie zametki PY - 1974 SP - 801 EP - 811 VL - 16 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a14/ LA - ru ID - MZM_1974_16_5_a14 ER -
E. P. Dolzhenko; E. A. Sevast'yanov. Approximation by rational functions in integral metrics and differentiability in the mean. Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 801-811. http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a14/