On almost reducible systems with almost periodic coefficients
Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 789-799.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\dot x=A(t)x$ be a system of two linear ordinary differential equations with almost periodic coefficients. Then there exists for any positive $\varepsilon$ an almost reducible system of equations $\dot x=B(t)x$ with almost periodic coefficients and such that $$ \sup_{-\infty+\infty}\|A(t)-B(t)\|\varepsilon. $$
@article{MZM_1974_16_5_a13,
     author = {V. L. Novikov},
     title = {On almost reducible systems with almost periodic coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {789--799},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a13/}
}
TY  - JOUR
AU  - V. L. Novikov
TI  - On almost reducible systems with almost periodic coefficients
JO  - Matematičeskie zametki
PY  - 1974
SP  - 789
EP  - 799
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a13/
LA  - ru
ID  - MZM_1974_16_5_a13
ER  - 
%0 Journal Article
%A V. L. Novikov
%T On almost reducible systems with almost periodic coefficients
%J Matematičeskie zametki
%D 1974
%P 789-799
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a13/
%G ru
%F MZM_1974_16_5_a13
V. L. Novikov. On almost reducible systems with almost periodic coefficients. Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 789-799. http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a13/