On almost reducible systems with almost periodic coefficients
Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 789-799
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\dot x=A(t)x$ be a system of two linear ordinary differential equations with almost periodic coefficients. Then there exists for any positive $\varepsilon$ an almost reducible system of equations $\dot x=B(t)x$ with almost periodic coefficients and such that
$$
\sup_{-\infty+\infty}\|A(t)-B(t)\|\varepsilon.
$$
@article{MZM_1974_16_5_a13,
author = {V. L. Novikov},
title = {On almost reducible systems with almost periodic coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {789--799},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a13/}
}
V. L. Novikov. On almost reducible systems with almost periodic coefficients. Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 789-799. http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a13/