Groups that are not generated by certain $\mathfrak X$-abnormal subgroups
Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 771-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of formations the concept of an $\mathfrak X$-normal maximal subgroup is widely used, being some formation [1]. In this note the concept of $\mathfrak X$ normality is introduced for arbitrary subgroups. Subgroups that are not $\mathfrak X$-normal are called $\mathfrak X$-abnormal. Finite groups that are not generated by $S$-abnormal $n$-th maximal subgroups ($n=1,2,3,4$) are studied, where $S$ is the formation of all supersolvable groups. The general nature of the results of [3–6] is brought out.
@article{MZM_1974_16_5_a10,
     author = {K. A. Reshko},
     title = {Groups that are not generated by certain $\mathfrak X$-abnormal subgroups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {771--776},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a10/}
}
TY  - JOUR
AU  - K. A. Reshko
TI  - Groups that are not generated by certain $\mathfrak X$-abnormal subgroups
JO  - Matematičeskie zametki
PY  - 1974
SP  - 771
EP  - 776
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a10/
LA  - ru
ID  - MZM_1974_16_5_a10
ER  - 
%0 Journal Article
%A K. A. Reshko
%T Groups that are not generated by certain $\mathfrak X$-abnormal subgroups
%J Matematičeskie zametki
%D 1974
%P 771-776
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a10/
%G ru
%F MZM_1974_16_5_a10
K. A. Reshko. Groups that are not generated by certain $\mathfrak X$-abnormal subgroups. Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 771-776. http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a10/