On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels
Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 691-701.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the metrics $C$ and $L$ we solve the problem of best approximation by trigonometric polynomials in classes of continuous periodic functions $f(x)$ of the form $$f(x)=\frac1n\int^{2\pi}_0K(t)\varphi(x-t)\,dt,$$ where the kernel $K(t)$ is a periodic integral of a linear combination of functions that are absolutely monotonic in the intervals $(-\infty,2\pi)$ and $(0,\infty), and $\|\varphi\|\le1$. A~particular case of such kernels for any $s>0$ and $\alpha\in(-\infty,+\infty)$ are kernels of the form $$K(t)=\sum^\infty_{k=1}\frac{\cos(kt-\frac{\alpha\pi}2)}{k^s},$$ which for $\alpha=s$ generate classes of periodic functions with a bounded $s$-th derivative in the sense of Weyl, whereas for $\alpha=s+1$ they generate conjugate classes. For various values of $s$ and $\alpha$, apart from the case $s\in(0,1)$ and $\alpha\in[0,2]\setminus[s,2-s]$, such kernels were studied by various investigators (see [1-?12]).
@article{MZM_1974_16_5_a1,
     author = {V. K. Dzyadyk},
     title = {On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels},
     journal = {Matemati\v{c}eskie zametki},
     pages = {691--701},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a1/}
}
TY  - JOUR
AU  - V. K. Dzyadyk
TI  - On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels
JO  - Matematičeskie zametki
PY  - 1974
SP  - 691
EP  - 701
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a1/
LA  - ru
ID  - MZM_1974_16_5_a1
ER  - 
%0 Journal Article
%A V. K. Dzyadyk
%T On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels
%J Matematičeskie zametki
%D 1974
%P 691-701
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a1/
%G ru
%F MZM_1974_16_5_a1
V. K. Dzyadyk. On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels. Matematičeskie zametki, Tome 16 (1974) no. 5, pp. 691-701. http://geodesic.mathdoc.fr/item/MZM_1974_16_5_a1/