On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 577-584
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the operators: $L_0=\overline{M_0\otimes E''+E'\otimes Q}$, acting in the tensor product of the infinite-dimensional Hilbert spaces $H'$ and $H''$, where the operator $M_0$ is symmetric in $H'$ and $Q$ is self-adjoint in $H''$. We study the problem concerning the existence of self-adjoint extensions, the spectrum of which possesses certain preassigned properties. In particular, we obtain necessary and sufficient conditions under which the operator $L_0$ admits self-adjoint extensions with a discrete spectrum.
@article{MZM_1974_16_4_a9,
author = {V. A. Mikhailets},
title = {On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables},
journal = {Matemati\v{c}eskie zametki},
pages = {577--584},
year = {1974},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/}
}
TY - JOUR AU - V. A. Mikhailets TI - On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables JO - Matematičeskie zametki PY - 1974 SP - 577 EP - 584 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/ LA - ru ID - MZM_1974_16_4_a9 ER -
V. A. Mikhailets. On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 577-584. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/