On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 577-584.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the operators: $L_0=\overline{M_0\otimes E''+E'\otimes Q}$, acting in the tensor product of the infinite-dimensional Hilbert spaces $H'$ and $H''$, where the operator $M_0$ is symmetric in $H'$ and $Q$ is self-adjoint in $H''$. We study the problem concerning the existence of self-adjoint extensions, the spectrum of which possesses certain preassigned properties. In particular, we obtain necessary and sufficient conditions under which the operator $L_0$ admits self-adjoint extensions with a discrete spectrum.
@article{MZM_1974_16_4_a9,
     author = {V. A. Mikhailets},
     title = {On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--584},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/}
}
TY  - JOUR
AU  - V. A. Mikhailets
TI  - On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables
JO  - Matematičeskie zametki
PY  - 1974
SP  - 577
EP  - 584
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/
LA  - ru
ID  - MZM_1974_16_4_a9
ER  - 
%0 Journal Article
%A V. A. Mikhailets
%T On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables
%J Matematičeskie zametki
%D 1974
%P 577-584
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/
%G ru
%F MZM_1974_16_4_a9
V. A. Mikhailets. On the nature of the spectrum of self-adjoint extensions of operators admitting separation of variables. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 577-584. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a9/