Generalization of a theorem of Griffiths concerning algebraic cycles
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 563-570
Cet article a éte moissonné depuis la source Math-Net.Ru
We generalize a theorem of Griffiths concerning the fact that a primitive cycle of half dimension on a hypersurface in $P^{2m+1}$ yields cycles algebraically not equivalent to zero but homologous to zero on hyperplane sections.
@article{MZM_1974_16_4_a7,
author = {K. I. Kii},
title = {Generalization of a~theorem of {Griffiths} concerning algebraic cycles},
journal = {Matemati\v{c}eskie zametki},
pages = {563--570},
year = {1974},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a7/}
}
K. I. Kii. Generalization of a theorem of Griffiths concerning algebraic cycles. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 563-570. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a7/