A~criterion for algebraic dependence of transcendental numbers
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 553-562
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a theorem concerning the algebraic dependence of the $p+1$ numbers $\theta,\theta_1,\dots,\theta_p$ subject to the condition that the numbers $\theta_1,\dots,\theta_p$ are algebraically independent and possess a “sufficiently good” estimate of measure of algebraic independence.
@article{MZM_1974_16_4_a6,
author = {A. A. Shmelev},
title = {A~criterion for algebraic dependence of transcendental numbers},
journal = {Matemati\v{c}eskie zametki},
pages = {553--562},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a6/}
}
A. A. Shmelev. A~criterion for algebraic dependence of transcendental numbers. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 553-562. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a6/