Necessary conditions for the stability of difference schemes
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 545-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

For difference equations of the form $u^{n+1}=Au^n+f^nh$, $n\le T/h$ the necessary condition for stability due to von Neumann is well known; this condition is expressed in terms of the spectrum of the operator $A$: $r(A)\le1+ch$. In this note, for a certain class of difference equations, we express this condition in terms of the spectral radius of the symbol of the operator $A$.
@article{MZM_1974_16_4_a5,
     author = {V. V. Kucherenko},
     title = {Necessary conditions for the stability of difference schemes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {545--552},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a5/}
}
TY  - JOUR
AU  - V. V. Kucherenko
TI  - Necessary conditions for the stability of difference schemes
JO  - Matematičeskie zametki
PY  - 1974
SP  - 545
EP  - 552
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a5/
LA  - ru
ID  - MZM_1974_16_4_a5
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%T Necessary conditions for the stability of difference schemes
%J Matematičeskie zametki
%D 1974
%P 545-552
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a5/
%G ru
%F MZM_1974_16_4_a5
V. V. Kucherenko. Necessary conditions for the stability of difference schemes. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 545-552. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a5/