On the properties of a~class of integral operators in the space $L_p$
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 529-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_p(\mathscr L)$, $p>1$, we consider the operator $A\varphi=a\varphi+bS\varphi+cP\varphi+T\varphi$, where $a(t)$, $b(t)$, and $c(t)$ are piecewise-continuous functions on the contour $\mathscr L$, $T$ is a completely continuous operator, $$ P_\varphi=\frac1{2\pi i}\int_\mathscr L\frac{\varphi(\tau)\,d\tau}{\tau-t-1},\quad S_\varphi=\frac1{\pi i}\int_{\mathscr L}\frac{\varphi(\tau)\,d\tau}{\tau-t}, $$ $\mathscr L$ is a closed convex Lyapunov contour having no rectilinear portions. We study the properties of the operator $P$ and we show that the Noether property conditions and the index of the operator $A$ do not depend on the term $c_P$.
@article{MZM_1974_16_4_a3,
     author = {N. L. Vasilevskii},
     title = {On the properties of a~class of integral operators in the space $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--535},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a3/}
}
TY  - JOUR
AU  - N. L. Vasilevskii
TI  - On the properties of a~class of integral operators in the space $L_p$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 529
EP  - 535
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a3/
LA  - ru
ID  - MZM_1974_16_4_a3
ER  - 
%0 Journal Article
%A N. L. Vasilevskii
%T On the properties of a~class of integral operators in the space $L_p$
%J Matematičeskie zametki
%D 1974
%P 529-535
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a3/
%G ru
%F MZM_1974_16_4_a3
N. L. Vasilevskii. On the properties of a~class of integral operators in the space $L_p$. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 529-535. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a3/