On the summability of functions analytic in star-shaped domains
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 523-528
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)$ be a function which is analytic over the whole plane except for an arbitrary interval $\Delta$, $0\overline\in\Delta n$. Suppose that $f(z)$ has a power series expansion about the origin. We prove that a matrix exists which sums the power series to $f(z)$ over the whole plane except for $\Delta$.
@article{MZM_1974_16_4_a2,
author = {V. A. Belyaev},
title = {On the summability of functions analytic in star-shaped domains},
journal = {Matemati\v{c}eskie zametki},
pages = {523--528},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a2/}
}
V. A. Belyaev. On the summability of functions analytic in star-shaped domains. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 523-528. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a2/