On the summability of functions analytic in star-shaped domains
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 523-528.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be a function which is analytic over the whole plane except for an arbitrary interval $\Delta$, $0\overline\in\Delta n$. Suppose that $f(z)$ has a power series expansion about the origin. We prove that a matrix exists which sums the power series to $f(z)$ over the whole plane except for $\Delta$.
@article{MZM_1974_16_4_a2,
     author = {V. A. Belyaev},
     title = {On the summability of functions analytic in star-shaped domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {523--528},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a2/}
}
TY  - JOUR
AU  - V. A. Belyaev
TI  - On the summability of functions analytic in star-shaped domains
JO  - Matematičeskie zametki
PY  - 1974
SP  - 523
EP  - 528
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a2/
LA  - ru
ID  - MZM_1974_16_4_a2
ER  - 
%0 Journal Article
%A V. A. Belyaev
%T On the summability of functions analytic in star-shaped domains
%J Matematičeskie zametki
%D 1974
%P 523-528
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a2/
%G ru
%F MZM_1974_16_4_a2
V. A. Belyaev. On the summability of functions analytic in star-shaped domains. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 523-528. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a2/