Some generalizations of the Riemann spaces of Einstein
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 619-622
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a class of Riemann structures, called generalized Einstein structures of index $2e$, of which Einstein spaces are a particular case. We show that these structures are stationary for functions introduced on a family of Riemann structures of the compact manifold of H. Weyl. This result solves a problem of M. Berger. As examples of structures which are generalized Einstein structures over all indices we cite homogeneous compact Riemann spaces with a nondecomposable isotropy group and products of such spaces.
@article{MZM_1974_16_4_a14,
author = {G. M. Kuz'mina},
title = {Some generalizations of the {Riemann} spaces of {Einstein}},
journal = {Matemati\v{c}eskie zametki},
pages = {619--622},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a14/}
}
G. M. Kuz'mina. Some generalizations of the Riemann spaces of Einstein. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 619-622. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a14/