Algebraic form of aЁtheorem of Hahn--Banach type for lattice manifolds
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 595-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a vector lattice. A linear functionalf on $E$ is called a lattice homomorphism if $f(\sup(x,y))=\max(f(x),f(y))$ for all $x,y\in E$. For lattice homomorphisms a theorem of Hahn–Banach type is valid. In this note we prove an algebraic analog of this theorem.
@article{MZM_1974_16_4_a11,
     author = {I. I. Perepechai},
     title = {Algebraic form of {a{\CYRYO}theorem} of {Hahn--Banach} type for lattice manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {595--600},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a11/}
}
TY  - JOUR
AU  - I. I. Perepechai
TI  - Algebraic form of aЁtheorem of Hahn--Banach type for lattice manifolds
JO  - Matematičeskie zametki
PY  - 1974
SP  - 595
EP  - 600
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a11/
LA  - ru
ID  - MZM_1974_16_4_a11
ER  - 
%0 Journal Article
%A I. I. Perepechai
%T Algebraic form of aЁtheorem of Hahn--Banach type for lattice manifolds
%J Matematičeskie zametki
%D 1974
%P 595-600
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a11/
%G ru
%F MZM_1974_16_4_a11
I. I. Perepechai. Algebraic form of aЁtheorem of Hahn--Banach type for lattice manifolds. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 595-600. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a11/