Algebraic form of aЁtheorem of Hahn--Banach type for lattice manifolds
Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 595-600
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a vector lattice. A linear functionalf on $E$ is called a lattice homomorphism if $f(\sup(x,y))=\max(f(x),f(y))$ for all $x,y\in E$. For lattice homomorphisms a theorem of Hahn–Banach type is valid. In this note we prove an algebraic analog of this theorem.
@article{MZM_1974_16_4_a11,
author = {I. I. Perepechai},
title = {Algebraic form of {a{\CYRYO}theorem} of {Hahn--Banach} type for lattice manifolds},
journal = {Matemati\v{c}eskie zametki},
pages = {595--600},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a11/}
}
I. I. Perepechai. Algebraic form of aЁtheorem of Hahn--Banach type for lattice manifolds. Matematičeskie zametki, Tome 16 (1974) no. 4, pp. 595-600. http://geodesic.mathdoc.fr/item/MZM_1974_16_4_a11/