The problem concerning the epimorphicity of a~convolution operator in convex domains
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 415-422
Voir la notice de l'article provenant de la source Math-Net.Ru
We deduce an epimorphicity criterion for the convolution operator
$$
(a*x)(z)=\frac1{2\pi i}\oint x(t)\tilde a(t-z)\,dt,
$$
acting from a space of functions analytic in a convex domain into another such space; $\tilde a(z)$ is the Borel transformation of the exponential function $a(z)$.
@article{MZM_1974_16_3_a8,
author = {O. V. Epifanov},
title = {The problem concerning the epimorphicity of a~convolution operator in convex domains},
journal = {Matemati\v{c}eskie zametki},
pages = {415--422},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a8/}
}
O. V. Epifanov. The problem concerning the epimorphicity of a~convolution operator in convex domains. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 415-422. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a8/