The problem concerning the epimorphicity of a~convolution operator in convex domains
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 415-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce an epimorphicity criterion for the convolution operator $$ (a*x)(z)=\frac1{2\pi i}\oint x(t)\tilde a(t-z)\,dt, $$ acting from a space of functions analytic in a convex domain into another such space; $\tilde a(z)$ is the Borel transformation of the exponential function $a(z)$.
@article{MZM_1974_16_3_a8,
     author = {O. V. Epifanov},
     title = {The problem concerning the epimorphicity of a~convolution operator in convex domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {415--422},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a8/}
}
TY  - JOUR
AU  - O. V. Epifanov
TI  - The problem concerning the epimorphicity of a~convolution operator in convex domains
JO  - Matematičeskie zametki
PY  - 1974
SP  - 415
EP  - 422
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a8/
LA  - ru
ID  - MZM_1974_16_3_a8
ER  - 
%0 Journal Article
%A O. V. Epifanov
%T The problem concerning the epimorphicity of a~convolution operator in convex domains
%J Matematičeskie zametki
%D 1974
%P 415-422
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a8/
%G ru
%F MZM_1974_16_3_a8
O. V. Epifanov. The problem concerning the epimorphicity of a~convolution operator in convex domains. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 415-422. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a8/