Group algebras of generalized primary groups
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 399-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of the known results concerning group algebras of primary groups carry over to group algebras of generalized primary groups. In particular, we show that the group algebra $LG$ of a generalized primary (relative to the prime $p$) group $G$ over the ring $L$, in which the element $p$ is not invertible, determines, to within an isomorphism, a basis subgroup of the generalized primary group $G$. In addition, we indicate two classes of composite abelian groups which are determined, to within an isomorphism, by their group algebras over the ring $L$.
@article{MZM_1974_16_3_a6,
     author = {Yu. M. Firsov},
     title = {Group algebras of generalized primary groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {399--405},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a6/}
}
TY  - JOUR
AU  - Yu. M. Firsov
TI  - Group algebras of generalized primary groups
JO  - Matematičeskie zametki
PY  - 1974
SP  - 399
EP  - 405
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a6/
LA  - ru
ID  - MZM_1974_16_3_a6
ER  - 
%0 Journal Article
%A Yu. M. Firsov
%T Group algebras of generalized primary groups
%J Matematičeskie zametki
%D 1974
%P 399-405
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a6/
%G ru
%F MZM_1974_16_3_a6
Yu. M. Firsov. Group algebras of generalized primary groups. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 399-405. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a6/