Group algebras of generalized primary groups
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 399-405
Cet article a éte moissonné depuis la source Math-Net.Ru
A number of the known results concerning group algebras of primary groups carry over to group algebras of generalized primary groups. In particular, we show that the group algebra $LG$ of a generalized primary (relative to the prime $p$) group $G$ over the ring $L$, in which the element $p$ is not invertible, determines, to within an isomorphism, a basis subgroup of the generalized primary group $G$. In addition, we indicate two classes of composite abelian groups which are determined, to within an isomorphism, by their group algebras over the ring $L$.
@article{MZM_1974_16_3_a6,
author = {Yu. M. Firsov},
title = {Group algebras of generalized primary groups},
journal = {Matemati\v{c}eskie zametki},
pages = {399--405},
year = {1974},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a6/}
}
Yu. M. Firsov. Group algebras of generalized primary groups. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 399-405. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a6/