Additional information concerning the content of the product of polynomials
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 395-398
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\operatorname{Cont}_Af$ denote the content of the polynomial $f$ in several unknowns with coefficients from the extension $R$ of the ring $A$. We prove that for arbitrary polynomials $f$ and $g$ the relation
$$
\operatorname{Cont}\nolimits_Afg\cdot(\operatorname{Cont}g)^m=\operatorname{Cont}f\cdot(\operatorname{Cont}g)^{m+1},
$$
holds, where $m+1$ is the number of the nonzero terms of the polynomial $f$.
@article{MZM_1974_16_3_a5,
author = {A. I. Uzkov},
title = {Additional information concerning the content of the product of polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {395--398},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a5/}
}
A. I. Uzkov. Additional information concerning the content of the product of polynomials. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 395-398. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a5/