Existence of Hall normal subgroups in finite groups
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 381-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary and sufficient criterion for the existence of an invariant complement to a nilpotent subgroup contained as a direct factor in one of the maximal subgroups of a given group; we also find a condition for the $p$-closure of a group, all proper subgroups of which are $p$-closed, expressed in terms of the degree of one of its nonlinear irreducible characters.
@article{MZM_1974_16_3_a3,
     author = {A. V. Romanovskii},
     title = {Existence of {Hall} normal subgroups in finite groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {381--385},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a3/}
}
TY  - JOUR
AU  - A. V. Romanovskii
TI  - Existence of Hall normal subgroups in finite groups
JO  - Matematičeskie zametki
PY  - 1974
SP  - 381
EP  - 385
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a3/
LA  - ru
ID  - MZM_1974_16_3_a3
ER  - 
%0 Journal Article
%A A. V. Romanovskii
%T Existence of Hall normal subgroups in finite groups
%J Matematičeskie zametki
%D 1974
%P 381-385
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a3/
%G ru
%F MZM_1974_16_3_a3
A. V. Romanovskii. Existence of Hall normal subgroups in finite groups. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 381-385. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a3/