Existence of Hall normal subgroups in finite groups
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 381-385
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a necessary and sufficient criterion for the existence of an invariant complement to a nilpotent subgroup contained as a direct factor in one of the maximal subgroups of a given group; we also find a condition for the $p$-closure of a group, all proper subgroups of which are $p$-closed, expressed in terms of the degree of one of its nonlinear irreducible characters.
@article{MZM_1974_16_3_a3,
author = {A. V. Romanovskii},
title = {Existence of {Hall} normal subgroups in finite groups},
journal = {Matemati\v{c}eskie zametki},
pages = {381--385},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a3/}
}
A. V. Romanovskii. Existence of Hall normal subgroups in finite groups. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 381-385. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a3/