Operator of best approximation on finite-dimensional subspaces
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 501-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modulus of continuity of the operator of best approximation on a subspace tends towards zero uniformly on the class of all subspaces of an n-dimensional space only if the unit ball of the space contains no extremal subsets of dimensionality $k$ ($0$).
@article{MZM_1974_16_3_a18,
     author = {V. I. Berdyshev},
     title = {Operator of best approximation on finite-dimensional subspaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {501--511},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a18/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Operator of best approximation on finite-dimensional subspaces
JO  - Matematičeskie zametki
PY  - 1974
SP  - 501
EP  - 511
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a18/
LA  - ru
ID  - MZM_1974_16_3_a18
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Operator of best approximation on finite-dimensional subspaces
%J Matematičeskie zametki
%D 1974
%P 501-511
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a18/
%G ru
%F MZM_1974_16_3_a18
V. I. Berdyshev. Operator of best approximation on finite-dimensional subspaces. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 501-511. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a18/