Approximation of an interval by splines
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 491-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function defined on an interval we indicate a method of constructing an interpolational spline, which does not require knowledge of the derivatives of the function. The interpolational process possesses good convergence properties.
@article{MZM_1974_16_3_a17,
     author = {N. L. Patsko},
     title = {Approximation of an interval by splines},
     journal = {Matemati\v{c}eskie zametki},
     pages = {491--500},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a17/}
}
TY  - JOUR
AU  - N. L. Patsko
TI  - Approximation of an interval by splines
JO  - Matematičeskie zametki
PY  - 1974
SP  - 491
EP  - 500
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a17/
LA  - ru
ID  - MZM_1974_16_3_a17
ER  - 
%0 Journal Article
%A N. L. Patsko
%T Approximation of an interval by splines
%J Matematičeskie zametki
%D 1974
%P 491-500
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a17/
%G ru
%F MZM_1974_16_3_a17
N. L. Patsko. Approximation of an interval by splines. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 491-500. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a17/