Density of an $(r,R)$-system
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 447-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a complete geometrical theory for the study of the exact lower bound of the density of $n$-dimensional lattices. For arbitrary $(r,R)$-systems we prove an analog of well known theorems due to Rogers from the theory of packings, and also from this same theory, an analog of a theorem due to Coxeter, Few, and Rogers. Several special examples are treated.
@article{MZM_1974_16_3_a12,
     author = {S. S. Ryshkov},
     title = {Density of an $(r,R)$-system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {447--454},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a12/}
}
TY  - JOUR
AU  - S. S. Ryshkov
TI  - Density of an $(r,R)$-system
JO  - Matematičeskie zametki
PY  - 1974
SP  - 447
EP  - 454
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a12/
LA  - ru
ID  - MZM_1974_16_3_a12
ER  - 
%0 Journal Article
%A S. S. Ryshkov
%T Density of an $(r,R)$-system
%J Matematičeskie zametki
%D 1974
%P 447-454
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a12/
%G ru
%F MZM_1974_16_3_a12
S. S. Ryshkov. Density of an $(r,R)$-system. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 447-454. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a12/