Density of an $(r,R)$-system
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 447-454
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we give a complete geometrical theory for the study of the exact lower bound of the density of $n$-dimensional lattices. For arbitrary $(r,R)$-systems we prove an analog of well known theorems due to Rogers from the theory of packings, and also from this same theory, an analog of a theorem due to Coxeter, Few, and Rogers. Several special examples are treated.
@article{MZM_1974_16_3_a12,
author = {S. S. Ryshkov},
title = {Density of an $(r,R)$-system},
journal = {Matemati\v{c}eskie zametki},
pages = {447--454},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a12/}
}
S. S. Ryshkov. Density of an $(r,R)$-system. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 447-454. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a12/