Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in $C^n$
Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 431-440
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the solvability of convolution equations in some spaces of holomorphic functions of $n$ variables. We clarify the structure of solutions of the homogeneous equation.
@article{MZM_1974_16_3_a10,
author = {V. V. Morzhakov},
title = {Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in $C^n$},
journal = {Matemati\v{c}eskie zametki},
pages = {431--440},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a10/}
}
TY - JOUR AU - V. V. Morzhakov TI - Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in $C^n$ JO - Matematičeskie zametki PY - 1974 SP - 431 EP - 440 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a10/ LA - ru ID - MZM_1974_16_3_a10 ER -
V. V. Morzhakov. Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in $C^n$. Matematičeskie zametki, Tome 16 (1974) no. 3, pp. 431-440. http://geodesic.mathdoc.fr/item/MZM_1974_16_3_a10/