Characterization of the linear groups PSL (2,11) and PSL (2,13)
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 247-252
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the nonsimplicity of a finite group containing an involution $\tau$ such that the quotient group $C(\tau)/{\tau}$ the Frobenius group with an additional factor of odd prime order acting transitively on the nonunit elements of the kernel. Based on this we obtain a characterization of the linear groups PSL (2, 11) and PSL (2, 13).
@article{MZM_1974_16_2_a7,
author = {N. D. Podufalov},
title = {Characterization of the linear groups {PSL} (2,11) and {PSL} (2,13)},
journal = {Matemati\v{c}eskie zametki},
pages = {247--252},
year = {1974},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a7/}
}
N. D. Podufalov. Characterization of the linear groups PSL (2,11) and PSL (2,13). Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 247-252. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a7/