Characterization of the linear groups PSL (2,11) and PSL (2,13)
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 247-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the nonsimplicity of a finite group containing an involution $\tau$ such that the quotient group $C(\tau)/{\tau}$ the Frobenius group with an additional factor of odd prime order acting transitively on the nonunit elements of the kernel. Based on this we obtain a characterization of the linear groups PSL (2, 11) and PSL (2, 13).
@article{MZM_1974_16_2_a7,
     author = {N. D. Podufalov},
     title = {Characterization of the linear groups {PSL} (2,11) and {PSL} (2,13)},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--252},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a7/}
}
TY  - JOUR
AU  - N. D. Podufalov
TI  - Characterization of the linear groups PSL (2,11) and PSL (2,13)
JO  - Matematičeskie zametki
PY  - 1974
SP  - 247
EP  - 252
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a7/
LA  - ru
ID  - MZM_1974_16_2_a7
ER  - 
%0 Journal Article
%A N. D. Podufalov
%T Characterization of the linear groups PSL (2,11) and PSL (2,13)
%J Matematičeskie zametki
%D 1974
%P 247-252
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a7/
%G ru
%F MZM_1974_16_2_a7
N. D. Podufalov. Characterization of the linear groups PSL (2,11) and PSL (2,13). Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 247-252. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a7/