Generalization of a~theorem on the quasi-analyticity of a~function
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 205-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is a known fact that if a function, together with all of its derivatives, vanishes at a point, then the function will be zero in a neighborhood of the point if its successive derivatives satisfy certain estimates. We show that even if the function does not have a priori all of its derivatives but is such that its first derivative has a special sequence of majorizing functions, then in this case also the function will be equal to zero. We use our results to obtain theorems concerning the uniqueness of the solution of an abstract Cauchy problem.
@article{MZM_1974_16_2_a2,
     author = {N. N. Chaus},
     title = {Generalization of a~theorem on the quasi-analyticity of a~function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--212},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a2/}
}
TY  - JOUR
AU  - N. N. Chaus
TI  - Generalization of a~theorem on the quasi-analyticity of a~function
JO  - Matematičeskie zametki
PY  - 1974
SP  - 205
EP  - 212
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a2/
LA  - ru
ID  - MZM_1974_16_2_a2
ER  - 
%0 Journal Article
%A N. N. Chaus
%T Generalization of a~theorem on the quasi-analyticity of a~function
%J Matematičeskie zametki
%D 1974
%P 205-212
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a2/
%G ru
%F MZM_1974_16_2_a2
N. N. Chaus. Generalization of a~theorem on the quasi-analyticity of a~function. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 205-212. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a2/