Estimate of the modulus of continuity of the operator grad F
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 349-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an operator which makes the subdifferential of a convex functional correspond to a given element we establish the dependence of the modulus of continuity of the operator on the modulus of smoothness and the modulus of convexity of this functional. The estimates we obtain are applied to the problem of the construction of a best element by the gradient method.
@article{MZM_1974_16_2_a18,
     author = {V. I. Berdyshev},
     title = {Estimate of the modulus of continuity of the operator grad {F}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {349--360},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a18/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Estimate of the modulus of continuity of the operator grad F
JO  - Matematičeskie zametki
PY  - 1974
SP  - 349
EP  - 360
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a18/
LA  - ru
ID  - MZM_1974_16_2_a18
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Estimate of the modulus of continuity of the operator grad F
%J Matematičeskie zametki
%D 1974
%P 349-360
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a18/
%G ru
%F MZM_1974_16_2_a18
V. I. Berdyshev. Estimate of the modulus of continuity of the operator grad F. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 349-360. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a18/