The concept of approximative compactness and alternate versions of it
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 337-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study various characteristics and generalizations of approximative compact and approximative weak compact sets. We generalize a result of Asplund concerning sets whose intersection with each halfspace is an existence set. In particular, in smooth Efimov–Stechkin spaces, such a set, if it is a Chebyshev set, must be convex.
@article{MZM_1974_16_2_a17,
     author = {L. P. Vlasov},
     title = {The concept of approximative compactness and alternate versions of it},
     journal = {Matemati\v{c}eskie zametki},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a17/}
}
TY  - JOUR
AU  - L. P. Vlasov
TI  - The concept of approximative compactness and alternate versions of it
JO  - Matematičeskie zametki
PY  - 1974
SP  - 337
EP  - 348
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a17/
LA  - ru
ID  - MZM_1974_16_2_a17
ER  - 
%0 Journal Article
%A L. P. Vlasov
%T The concept of approximative compactness and alternate versions of it
%J Matematičeskie zametki
%D 1974
%P 337-348
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a17/
%G ru
%F MZM_1974_16_2_a17
L. P. Vlasov. The concept of approximative compactness and alternate versions of it. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 337-348. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a17/