The cardinalities of semigroups of isotonic transformations of reflexive graphs
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 317-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the semigroup of all isotonic transformations of an infinite partially ordered set is nondenumerable. We construct an example of a reflexive graph, the semigroup of all isotonic transformations of which is denumerable.
@article{MZM_1974_16_2_a15,
     author = {Yu. M. Vazhenin},
     title = {The cardinalities of semigroups of isotonic transformations of reflexive graphs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {317--323},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a15/}
}
TY  - JOUR
AU  - Yu. M. Vazhenin
TI  - The cardinalities of semigroups of isotonic transformations of reflexive graphs
JO  - Matematičeskie zametki
PY  - 1974
SP  - 317
EP  - 323
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a15/
LA  - ru
ID  - MZM_1974_16_2_a15
ER  - 
%0 Journal Article
%A Yu. M. Vazhenin
%T The cardinalities of semigroups of isotonic transformations of reflexive graphs
%J Matematičeskie zametki
%D 1974
%P 317-323
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a15/
%G ru
%F MZM_1974_16_2_a15
Yu. M. Vazhenin. The cardinalities of semigroups of isotonic transformations of reflexive graphs. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 317-323. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a15/