The product of two groups, one of which contains a~cyclic subgroup of index $\le2$
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 285-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a finite group $G=A\cdot B$ is solvable if the groups $A$ and $B$ contain cyclic subgroups with indices $\le2$. We provide a description of two classes of nonsolvable factorizable groups.
@article{MZM_1974_16_2_a12,
     author = {V. S. Monakhov},
     title = {The product of two groups, one of which contains a~cyclic subgroup of index $\le2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a12/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - The product of two groups, one of which contains a~cyclic subgroup of index $\le2$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 285
EP  - 295
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a12/
LA  - ru
ID  - MZM_1974_16_2_a12
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T The product of two groups, one of which contains a~cyclic subgroup of index $\le2$
%J Matematičeskie zametki
%D 1974
%P 285-295
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a12/
%G ru
%F MZM_1974_16_2_a12
V. S. Monakhov. The product of two groups, one of which contains a~cyclic subgroup of index $\le2$. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 285-295. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a12/