The product of two groups, one of which contains a~cyclic subgroup of index $\le2$
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 285-295
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a finite group $G=A\cdot B$ is solvable if the groups $A$ and $B$ contain cyclic subgroups with indices $\le2$. We provide a description of two classes of nonsolvable factorizable groups.
@article{MZM_1974_16_2_a12,
author = {V. S. Monakhov},
title = {The product of two groups, one of which contains a~cyclic subgroup of index $\le2$},
journal = {Matemati\v{c}eskie zametki},
pages = {285--295},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a12/}
}
V. S. Monakhov. The product of two groups, one of which contains a~cyclic subgroup of index $\le2$. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 285-295. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a12/