The problem of representing an arbitrary linear operator in the form of a differential operator of infinite order
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 277-283
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider linear operators, acting continuously from the space $A_{R_1}$ of functions analytic in the disk $|z| into the space $A_{R_2}$. We show that every such operator may be represented in the form of a linear differential operator of infinite order with coefficients analytic in the disk $|z|.
@article{MZM_1974_16_2_a11,
author = {Yu. F. Korobeinik},
title = {The problem of representing an arbitrary linear operator in the form of a~differential operator of infinite order},
journal = {Matemati\v{c}eskie zametki},
pages = {277--283},
year = {1974},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a11/}
}
TY - JOUR AU - Yu. F. Korobeinik TI - The problem of representing an arbitrary linear operator in the form of a differential operator of infinite order JO - Matematičeskie zametki PY - 1974 SP - 277 EP - 283 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a11/ LA - ru ID - MZM_1974_16_2_a11 ER -
Yu. F. Korobeinik. The problem of representing an arbitrary linear operator in the form of a differential operator of infinite order. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 277-283. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a11/