Many-dimensional operators of convolution type in spaces of weight-integrable functions
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 267-276
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that a convolution operator in the weight space $L_p^{\langle b\rangle}$ is similar to a generalized convolution operator in $L_p$. We obtain necessary and sufficient conditions for an operator of convolution type, acting in a weight space, to have the Noether property in a cone. These conditions say, in effect, that the operator symbol must not degenerate on the hull of some tubular domain associated with the weight and the cone.
@article{MZM_1974_16_2_a10,
author = {V. S. Rabinovich},
title = {Many-dimensional operators of convolution type in spaces of weight-integrable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {267--276},
year = {1974},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a10/}
}
V. S. Rabinovich. Many-dimensional operators of convolution type in spaces of weight-integrable functions. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a10/