Many-dimensional operators of convolution type in spaces of weight-integrable functions
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 267-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a convolution operator in the weight space $L_p^{\langle b\rangle}$ is similar to a generalized convolution operator in $L_p$. We obtain necessary and sufficient conditions for an operator of convolution type, acting in a weight space, to have the Noether property in a cone. These conditions say, in effect, that the operator symbol must not degenerate on the hull of some tubular domain associated with the weight and the cone.
@article{MZM_1974_16_2_a10,
     author = {V. S. Rabinovich},
     title = {Many-dimensional operators of convolution type in spaces of weight-integrable functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a10/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Many-dimensional operators of convolution type in spaces of weight-integrable functions
JO  - Matematičeskie zametki
PY  - 1974
SP  - 267
EP  - 276
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a10/
LA  - ru
ID  - MZM_1974_16_2_a10
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Many-dimensional operators of convolution type in spaces of weight-integrable functions
%J Matematičeskie zametki
%D 1974
%P 267-276
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a10/
%G ru
%F MZM_1974_16_2_a10
V. S. Rabinovich. Many-dimensional operators of convolution type in spaces of weight-integrable functions. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a10/