Best quadrature formula on the class $W_*^rL_2$
Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 193-204
Voir la notice de l'article provenant de la source Math-Net.Ru
For the classes of periodic functions with $r$-th derivative integrable in the mean,we obtain a best quadrature formula of the form \begin{gather*}
\int_0^1f(x)\,dx=\sum_{k=0}^{m-1}\sum_{l=0}^{\rho}p_{k,l}f^{(l)}(x_k)+R(f),\quad0\le\rho\le r-1,
\\
0\le x_0\dots\le1,
\end{gather*}
where $\rho=r-2$ and $r-3$, $r=3,5,7,\dots$, and we determine an exact bound for the error of this formula.
@article{MZM_1974_16_2_a1,
author = {N. E. Lushpai},
title = {Best quadrature formula on the class $W_*^rL_2$},
journal = {Matemati\v{c}eskie zametki},
pages = {193--204},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a1/}
}
N. E. Lushpai. Best quadrature formula on the class $W_*^rL_2$. Matematičeskie zametki, Tome 16 (1974) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/MZM_1974_16_2_a1/