Conformal pasting on a~torus
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 83-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem concerning global conformal pasting on a torus given by the algebraic equation $w^2=(1-z^2)(1-k^2z^2)$ $(0$. We obtain an algebraic equation for the new torus, and we find the function which accomplishes the conformal pasting.
@article{MZM_1974_16_1_a9,
     author = {N. I. Zhukova},
     title = {Conformal pasting on a~torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a9/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Conformal pasting on a~torus
JO  - Matematičeskie zametki
PY  - 1974
SP  - 83
EP  - 90
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a9/
LA  - ru
ID  - MZM_1974_16_1_a9
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Conformal pasting on a~torus
%J Matematičeskie zametki
%D 1974
%P 83-90
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a9/
%G ru
%F MZM_1974_16_1_a9
N. I. Zhukova. Conformal pasting on a~torus. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 83-90. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a9/