Automorphisms of the tensor product of Abelian and Grassmannian algebras
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 65-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an algebra $\mathfrak B_{n,m}$, over the field $R$ with $n+m$ generators $x_1,\dots,x_n,\xi_1,\dots,\xi_m$, satisfying the following relations:
\begin{gather}
[x_k,x_l]\equiv x_kx_l-x_lx_k=0,\quad[x_k,\xi_i]=0,
\tag{1
@article{MZM_1974_16_1_a7,
author = {V. F. Pakhomov},
title = {Automorphisms of the tensor product of {Abelian} and {Grassmannian} algebras},
journal = {Matemati\v{c}eskie zametki},
pages = {65--74},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a7/}
}
V. F. Pakhomov. Automorphisms of the tensor product of Abelian and Grassmannian algebras. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a7/