On the uniqueness of a Walsh series converging on subsequences of partial sum
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 27-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if a Walsh series whose coefficients tend towards zero is such that the subsequence of its partial sums indexed by $n_k$, where $n_k$ satisfies the condition $2^{k-1}$, tends everywhere, except possibly for a denumerable set, towards a bounded function $f(x)$, then this series is the Fourier series of the function $f(x)$.
@article{MZM_1974_16_1_a2,
     author = {V. A. Skvortsov},
     title = {On the uniqueness of a {Walsh} series converging on subsequences of partial sum},
     journal = {Matemati\v{c}eskie zametki},
     pages = {27--32},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a2/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - On the uniqueness of a Walsh series converging on subsequences of partial sum
JO  - Matematičeskie zametki
PY  - 1974
SP  - 27
EP  - 32
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a2/
LA  - ru
ID  - MZM_1974_16_1_a2
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T On the uniqueness of a Walsh series converging on subsequences of partial sum
%J Matematičeskie zametki
%D 1974
%P 27-32
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a2/
%G ru
%F MZM_1974_16_1_a2
V. A. Skvortsov. On the uniqueness of a Walsh series converging on subsequences of partial sum. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a2/