Approximation of the function $|x|$ by rational functions
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 163-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the approximation of the function $|x|$ by rational functions. We make more precise the best approximation estimate obtained by A. P. Bulanov. We prove that for arbitrary positive integral $n$ $$ R_n[|x|]^{-\pi\sqrt n} $$ where $A$ is an absolute constant.
@article{MZM_1974_16_1_a18,
     author = {N. S. Vyacheslavov},
     title = {Approximation of the function $|x|$ by rational functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a18/}
}
TY  - JOUR
AU  - N. S. Vyacheslavov
TI  - Approximation of the function $|x|$ by rational functions
JO  - Matematičeskie zametki
PY  - 1974
SP  - 163
EP  - 171
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a18/
LA  - ru
ID  - MZM_1974_16_1_a18
ER  - 
%0 Journal Article
%A N. S. Vyacheslavov
%T Approximation of the function $|x|$ by rational functions
%J Matematičeskie zametki
%D 1974
%P 163-171
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a18/
%G ru
%F MZM_1974_16_1_a18
N. S. Vyacheslavov. Approximation of the function $|x|$ by rational functions. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a18/