Finite groups with 2-Sylow intersections of rank $\le2$
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 129-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe finite simple groups in which each elementary subgroup of order 8 lies in no more than one Sylow 2-subgroup.
@article{MZM_1974_16_1_a14,
     author = {V. D. Mazurov and S. A. Syskin},
     title = {Finite groups with {2-Sylow} intersections of rank $\le2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a14/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - S. A. Syskin
TI  - Finite groups with 2-Sylow intersections of rank $\le2$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 129
EP  - 134
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a14/
LA  - ru
ID  - MZM_1974_16_1_a14
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A S. A. Syskin
%T Finite groups with 2-Sylow intersections of rank $\le2$
%J Matematičeskie zametki
%D 1974
%P 129-134
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a14/
%G ru
%F MZM_1974_16_1_a14
V. D. Mazurov; S. A. Syskin. Finite groups with 2-Sylow intersections of rank $\le2$. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a14/