Finite groups with 2-Sylow intersections of rank $\le2$
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 129-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe finite simple groups in which each elementary subgroup of order 8 lies in no more than one Sylow 2-subgroup.
@article{MZM_1974_16_1_a14,
author = {V. D. Mazurov and S. A. Syskin},
title = {Finite groups with {2-Sylow} intersections of rank $\le2$},
journal = {Matemati\v{c}eskie zametki},
pages = {129--134},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a14/}
}
V. D. Mazurov; S. A. Syskin. Finite groups with 2-Sylow intersections of rank $\le2$. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a14/