Approximation of periodic functions by trigonometric polynomials in the mean
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary summation methods we obtain inequalities between upper bounds of deviations in the $L$ metric and corresponding upper bounds in the $C$ metric with respect to a certain class of functions. These inequalities constitute a generalization of known relationships due to S. M. Nikol'skii. We consider the cases wherein these inequalities become exact or asymptotic equalities.
@article{MZM_1974_16_1_a1,
     author = {V. P. Motornyi},
     title = {Approximation of periodic functions by trigonometric polynomials in the mean},
     journal = {Matemati\v{c}eskie zametki},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a1/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - Approximation of periodic functions by trigonometric polynomials in the mean
JO  - Matematičeskie zametki
PY  - 1974
SP  - 15
EP  - 26
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a1/
LA  - ru
ID  - MZM_1974_16_1_a1
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T Approximation of periodic functions by trigonometric polynomials in the mean
%J Matematičeskie zametki
%D 1974
%P 15-26
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a1/
%G ru
%F MZM_1974_16_1_a1
V. P. Motornyi. Approximation of periodic functions by trigonometric polynomials in the mean. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a1/