Approximation of periodic functions by trigonometric polynomials in the mean
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 15-26
Cet article a éte moissonné depuis la source Math-Net.Ru
For arbitrary summation methods we obtain inequalities between upper bounds of deviations in the $L$ metric and corresponding upper bounds in the $C$ metric with respect to a certain class of functions. These inequalities constitute a generalization of known relationships due to S. M. Nikol'skii. We consider the cases wherein these inequalities become exact or asymptotic equalities.
@article{MZM_1974_16_1_a1,
author = {V. P. Motornyi},
title = {Approximation of periodic functions by trigonometric polynomials in the mean},
journal = {Matemati\v{c}eskie zametki},
pages = {15--26},
year = {1974},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a1/}
}
V. P. Motornyi. Approximation of periodic functions by trigonometric polynomials in the mean. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a1/