Distribution of roots of quasianalytic functions
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions of certain quasianalytic classes $C\{m_n\}$ on $(-\infty,\infty)$ we determine a function $\xi(x)$, depending on $\{m_n\}$, which is such that a sequence $\{x_k\}$ is a sequence of the roots of $f(x)\in C\{m_n\}$ if and only if for some $a$
$$
\int_a^\infty\frac{dn(x)}{\xi(x - a)}\infty,
$$
where $n(x)$ is a distribution function of the sequence $\{x_k\}$.
@article{MZM_1974_16_1_a0,
author = {V. S. Konyukhovskii},
title = {Distribution of roots of quasianalytic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {3--14},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a0/}
}
V. S. Konyukhovskii. Distribution of roots of quasianalytic functions. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a0/