Distribution of roots of quasianalytic functions
Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions of certain quasianalytic classes $C\{m_n\}$ on $(-\infty,\infty)$ we determine a function $\xi(x)$, depending on $\{m_n\}$, which is such that a sequence $\{x_k\}$ is a sequence of the roots of $f(x)\in C\{m_n\}$ if and only if for some $a$ $$ \int_a^\infty\frac{dn(x)}{\xi(x - a)}\infty, $$ where $n(x)$ is a distribution function of the sequence $\{x_k\}$.
@article{MZM_1974_16_1_a0,
     author = {V. S. Konyukhovskii},
     title = {Distribution of roots of quasianalytic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a0/}
}
TY  - JOUR
AU  - V. S. Konyukhovskii
TI  - Distribution of roots of quasianalytic functions
JO  - Matematičeskie zametki
PY  - 1974
SP  - 3
EP  - 14
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a0/
LA  - ru
ID  - MZM_1974_16_1_a0
ER  - 
%0 Journal Article
%A V. S. Konyukhovskii
%T Distribution of roots of quasianalytic functions
%J Matematičeskie zametki
%D 1974
%P 3-14
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a0/
%G ru
%F MZM_1974_16_1_a0
V. S. Konyukhovskii. Distribution of roots of quasianalytic functions. Matematičeskie zametki, Tome 16 (1974) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MZM_1974_16_1_a0/