On local uniqueness of the solution of boundary-value problems
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 891-895.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present conditions under which differentiability of the mappings $F:AC^n(I)\to L^n(I)$ and $\Phi:AC^n(I)\to R^n$ at $x_0\in AC^n(I)$ and the uniqueness of the solution of the boundaryvalue problem $u'=F'(x_0)(u)$, $\Phi'(x_0)(u)=0$ imply local uniqueness of the solution $x_0$ of the boundary-value problem $x'=F(x)$, $\Phi(x)=0$.
@article{MZM_1974_15_6_a7,
     author = {V. D. Ponomarev},
     title = {On local uniqueness of the solution of boundary-value problems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {891--895},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a7/}
}
TY  - JOUR
AU  - V. D. Ponomarev
TI  - On local uniqueness of the solution of boundary-value problems
JO  - Matematičeskie zametki
PY  - 1974
SP  - 891
EP  - 895
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a7/
LA  - ru
ID  - MZM_1974_15_6_a7
ER  - 
%0 Journal Article
%A V. D. Ponomarev
%T On local uniqueness of the solution of boundary-value problems
%J Matematičeskie zametki
%D 1974
%P 891-895
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a7/
%G ru
%F MZM_1974_15_6_a7
V. D. Ponomarev. On local uniqueness of the solution of boundary-value problems. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 891-895. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a7/