On local uniqueness of the solution of boundary-value problems
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 891-895
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we present conditions under which differentiability of the mappings $F:AC^n(I)\to L^n(I)$ and $\Phi:AC^n(I)\to R^n$ at $x_0\in AC^n(I)$ and the uniqueness of the solution of the boundaryvalue problem $u'=F'(x_0)(u)$, $\Phi'(x_0)(u)=0$ imply local uniqueness of the solution $x_0$ of the boundary-value problem $x'=F(x)$, $\Phi(x)=0$.
@article{MZM_1974_15_6_a7,
author = {V. D. Ponomarev},
title = {On local uniqueness of the solution of boundary-value problems},
journal = {Matemati\v{c}eskie zametki},
pages = {891--895},
publisher = {mathdoc},
volume = {15},
number = {6},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a7/}
}
V. D. Ponomarev. On local uniqueness of the solution of boundary-value problems. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 891-895. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a7/