On the zeros of analytic functions belonging to Gevrey classes
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 857-863.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions $f(z)\not\equiv0$, holomorphic in the unit disk $u$, infinitely differentiable in $\overline u$, and belonging to a given $\partial u$ class on partu, we establish sufficient conditions characterizing the sets $$ K_f^\infty=\{z:|z|=1,f^{(k)}(z)=0,\quad k=0,1,2,\dots\}. $$ These conditions are close to the necessary condition due to L. Carleson and substantially more precise than the conditions given by A.-M. Chollet (see [1, 2]).
@article{MZM_1974_15_6_a3,
     author = {V. S. Korolevich and E. A. Pogorelyi},
     title = {On the zeros of analytic functions belonging to {Gevrey} classes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {857--863},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a3/}
}
TY  - JOUR
AU  - V. S. Korolevich
AU  - E. A. Pogorelyi
TI  - On the zeros of analytic functions belonging to Gevrey classes
JO  - Matematičeskie zametki
PY  - 1974
SP  - 857
EP  - 863
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a3/
LA  - ru
ID  - MZM_1974_15_6_a3
ER  - 
%0 Journal Article
%A V. S. Korolevich
%A E. A. Pogorelyi
%T On the zeros of analytic functions belonging to Gevrey classes
%J Matematičeskie zametki
%D 1974
%P 857-863
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a3/
%G ru
%F MZM_1974_15_6_a3
V. S. Korolevich; E. A. Pogorelyi. On the zeros of analytic functions belonging to Gevrey classes. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 857-863. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a3/