On two basic conditions for the asymptotic representation of polynomials orthonormal on the unit circle
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 847-855
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove that the two basic conditions for the existence of an asymptotic representation of polynomials orthonormal on the unit circle, namely, the condition of G. Szegö and S. N. Bernshtein, expressed in terms of a weight function, and the condition of Ya. I. Geronimus, expressed in terms of a parameter of the orthonormal polynomials, are independent of each other.
@article{MZM_1974_15_6_a2,
author = {B. L. Golinskii},
title = {On two basic conditions for the asymptotic representation of polynomials orthonormal on the unit circle},
journal = {Matemati\v{c}eskie zametki},
pages = {847--855},
year = {1974},
volume = {15},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a2/}
}
TY - JOUR AU - B. L. Golinskii TI - On two basic conditions for the asymptotic representation of polynomials orthonormal on the unit circle JO - Matematičeskie zametki PY - 1974 SP - 847 EP - 855 VL - 15 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a2/ LA - ru ID - MZM_1974_15_6_a2 ER -
B. L. Golinskii. On two basic conditions for the asymptotic representation of polynomials orthonormal on the unit circle. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 847-855. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a2/