Approximation of certain classes of differentiable periodic functions by interpolational splines in a uniform decomposition
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 955-966
In this paper we obtain upper and lower bounds of a uniform approximation by interpolational splines of order $r$ in a uniform decomposition on the classes of functions $W^rH_\omega$ and $W_L^{r+2}$ and on the whole space $C^r$.
@article{MZM_1974_15_6_a14,
author = {A. A. Zhensykbaev},
title = {Approximation of certain classes of differentiable periodic functions by interpolational splines in a~uniform decomposition},
journal = {Matemati\v{c}eskie zametki},
pages = {955--966},
year = {1974},
volume = {15},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a14/}
}
TY - JOUR AU - A. A. Zhensykbaev TI - Approximation of certain classes of differentiable periodic functions by interpolational splines in a uniform decomposition JO - Matematičeskie zametki PY - 1974 SP - 955 EP - 966 VL - 15 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a14/ LA - ru ID - MZM_1974_15_6_a14 ER -
%0 Journal Article %A A. A. Zhensykbaev %T Approximation of certain classes of differentiable periodic functions by interpolational splines in a uniform decomposition %J Matematičeskie zametki %D 1974 %P 955-966 %V 15 %N 6 %U http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a14/ %G ru %F MZM_1974_15_6_a14
A. A. Zhensykbaev. Approximation of certain classes of differentiable periodic functions by interpolational splines in a uniform decomposition. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 955-966. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a14/