On sufficient conditions for the convergence of double series over rectangles
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 835-838
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove convergence almost everywhere on $[0,2\pi]\times[0,2\pi]$ of the double Fourier series of functions $f(x,y)$ with modulus of continuity
$$
\omega(f,\delta)=O\biggl(\frac1{\bigl(\ln\frac1\delta\bigr)^{1+\varepsilon}}\biggr)
$$
for $\varepsilon>0$.
@article{MZM_1974_15_6_a0,
author = {M. Bakhbukh},
title = {On sufficient conditions for the convergence of double series over rectangles},
journal = {Matemati\v{c}eskie zametki},
pages = {835--838},
publisher = {mathdoc},
volume = {15},
number = {6},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a0/}
}
M. Bakhbukh. On sufficient conditions for the convergence of double series over rectangles. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 835-838. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a0/