On sufficient conditions for the convergence of double series over rectangles
Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 835-838.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove convergence almost everywhere on $[0,2\pi]\times[0,2\pi]$ of the double Fourier series of functions $f(x,y)$ with modulus of continuity $$ \omega(f,\delta)=O\biggl(\frac1{\bigl(\ln\frac1\delta\bigr)^{1+\varepsilon}}\biggr) $$ for $\varepsilon>0$.
@article{MZM_1974_15_6_a0,
     author = {M. Bakhbukh},
     title = {On sufficient conditions for the convergence of double series over rectangles},
     journal = {Matemati\v{c}eskie zametki},
     pages = {835--838},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a0/}
}
TY  - JOUR
AU  - M. Bakhbukh
TI  - On sufficient conditions for the convergence of double series over rectangles
JO  - Matematičeskie zametki
PY  - 1974
SP  - 835
EP  - 838
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a0/
LA  - ru
ID  - MZM_1974_15_6_a0
ER  - 
%0 Journal Article
%A M. Bakhbukh
%T On sufficient conditions for the convergence of double series over rectangles
%J Matematičeskie zametki
%D 1974
%P 835-838
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a0/
%G ru
%F MZM_1974_15_6_a0
M. Bakhbukh. On sufficient conditions for the convergence of double series over rectangles. Matematičeskie zametki, Tome 15 (1974) no. 6, pp. 835-838. http://geodesic.mathdoc.fr/item/MZM_1974_15_6_a0/